When first learning to sketch the graph of a derivative function $f^{\prime}$,
if you try to do it only by intuition, oftentimes, you will find yourself sketching a graph parallel to $f$ instead.

## CONCEPTS

1. Where the graph of $f$ is going upwards to the right, the slope / derivative is positive, so the graph of $f^{\prime}$ should be above the $x$-axis.

Where the graph of $f$ is going downwards to the right, the slope / derivative is negative, so the graph of $f^{\prime}$ should be below the $x$-axis.
2. Where the graph of $f$ is steeper (*),
the slope / derivative has a large size / absolute value, so the graph of $f^{\prime}$ should be farther from the $x$-axis.

Where the graph of $f$ is flatter (**),
the slope / derivative has a large size / absolute value, so the graph of $f^{\prime}$ should be closer to the $x$-axis.
3. Where the graph of $f$ is a line,
the slope / derivative doesn't change,
so the graph of $f^{\prime}$ should be constant / horizontal.

In particular, where the graph of $f$ is a horizontal line, the slope / derivative is 0 , so the graph of $f^{\prime}$ should be $0 /$ along the $x$-axis.
4. Where the graph of $f$ has a horizontal tangent line, the slope / derivative is 0 , so the graph of $f^{\prime}$ should be at the $x$-axis.

Where the graph of $f$ has a vertical tangent line or vertical asymptote, the slope / derivative is approaching either positive or negative infinity, so the graph of $f^{\prime}$ should have a vertical asymptote.
The behavior of the graph of $f$ just to the left and right of the vertical tangent line determines if the graph of $f^{\prime}$ should be going to positive or negative infinity on each side of the asymptote.

Where the graph of $f$ has a jump or removable discontinuity, or a cusp, the slope / derivative is undefined, so the graph of $f^{\prime}$ should not have a point for that $x$ - coordinate.
The behavior of the graph of $f$ just to the left and right of the discontinuity determines if the graph of $f^{\prime}$ should be going to a positive or negative number, or to positive or negative infinity on each side of the discontinuity.
(*) "steep" means rising / falling quickly, like the side of a tall mountain
(**) "flat" means rising / falling slowly, like the ramp in front of the front door of a building

## PROCESS

A. Identify all $x$-coordinates on the graph of $f$ where there are
i. horizontal tangent lines the graph of $f^{\prime}$ should be at the $x$-axis at those $x$ - coordinates
ii. vertical tangent lines or asymptotes the graph of $f^{\prime}$ should have a vertical asymptote at those $x$ - coordinates
iii. jump or removable discontinuities or cusps the graph of $f^{\prime}$ should not have a point at those $x$ - coordinates
B. Between the $x$ - coordinates you identified in A
i. If the graph of $f$ is going steeply upwards to the right, the graph of $f^{\prime}$ should be farther above the $x$ - axis
ii. If the graph of $f$ is going slowly upwards to the right, the graph of $f^{\prime}$ should be closer above the $x$-axis
iii. If the graph of $f$ is going steeply downwards to the right, the graph of $f^{\prime}$ should be farther below the $x$-axis
iv. If the graph of $f$ is going slowly downwards to the right, the graph of $f^{\prime}$ should be closer below the $x$-axis

As the graph of $f$ changes its behavior, the graph of $f^{\prime}$ should
be above the $x$-axis as the graph of $f$ goes upwards to the right be below the $x$-axis as the graph of $f$ goes downwards to the right

AND
move farther from the $x$-axis as the graph of $f$ gets steeper move closer to the $x$-axis as the graph of $f$ gets flatter

